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Abstract

Elastic perfectly-plastic asymptotic plane stress crack tip fields have been constructed by assembling elastic, constant
stress and fan sectors under a complete range of mixed mode I/II states of loading. The angular stress distributions are
fully continuous, and do not contain the stress discontinuities which have been a feature of many previously proposed
solutions. The analytic solutions are verified by finite element solutions under contained yielding conditions. The struc-
ture of the elastic perfectly-plastic fields is compared to the structure of the asymptotic strain hardening fields.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Insight into the structure of asymptotic elastic—plastic crack tip fields can be developed by idealising the
material response as elastic perfectly-plastic. This simplification allows the use of slip field theory, which has
been rigorously established for both plane stress and plane strain conditions by Hill (1950). Perfect plastic-
ity has been widely regarded as the limit of a power hardening response as the strain hardening rate ap-
proaches zero. In this context, asymptotic perfectly-plastic fields for plane strain and plane stress have
been discussed as the limit of the HRR fields (Hutchinson, 1968a; Rice and Rosengren, 1968). However,
as the HRR fields are derived for deformation plasticity, or non-linear elasticity, this approach necessarily
leads to fields in which plasticity is assumed to surround the crack tip at all angles. As an example, under
elastic perfectly-plastic conditions Hutchinson (1968b) has proposed the mode I, plane stress field shown in
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Fig. 2. The Shih (1973) mode II plane stress slip line field. The centred fan sectors are shaded.

Fig. 1. To ensure that the yield criterion is satisfied at all angles around the crack tip it is necessary to intro-
duce a discontinuity in radial stress between the constant stress sectors which trail the crack tip. These dis-
continuities appear as abrupt changes in the slope of the slip lines. The mode I field was modified by Shih
(1973) to accommodate mixed mode I/II loading by postulating that the curved fan ahead of the crack ro-
tates and a constant stress sector develops, splitting the fan ahead of the crack. However discontinuities are
still required to satisfy the yield criterion and insufficient equations exist to define their orientation in a un-
ique manner. This problem was addressed by Dong and Pan (1990) who proposed a slightly different
arrangement of sectors satisfying the yield criterion at all angles. In mode I this requires a small constant
stress sector with an angular span of 5.22° to be introduced directly ahead of the crack. This makes rela-
tively little difference to the mode I stress distribution proposed by Hutchinson (1968b), and in mixed mode
loading the sector rotates and expands allowing a unique solution to the orientation of the stress discon-
tinuity. With increasing amounts of shear the discontinuity disappears into the crack flanks giving the fully
continuous near mode II fields shown in Fig. 2, discussed by Shih (1973).

The fields proposed by Hutchinson (1968b), Shih (1973) and Dong and Pan (1990) are all based on the
assumption that plasticity surrounds the crack tip at all angles. Under perfectly-plastic conditions in plane
strain, Nemat-Nasser and Obata (1984), Du and Hancock (1991), Li and Hancock (1999) and Sham et al.
(1999) have demonstrated that incomplete plasticity occurs around the crack tip in mode I. Sham and
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Hancock (1999) subsequently demonstrated that this is also a feature of the mode I perfectly-plastic plane
stress field. In the present work, the assumption that plasticity surrounds the crack tip is relaxed in consid-
ering the full family of mixed mode plane stress fields from mode I to mode II, within a framework of small
deformation theory. The analytic elastic perfectly-plastic solutions are verified by numerical solutions based
on boundary layer formulations. The numerical solutions are extended to strain hardening behaviour and
comparisons between the structure of elastic perfectly-plastic and strain hardening fields are discussed as
the strain hardening approaches non-hardening behaviour.

2. Slip line fields

Mathematically, slip lines are the characteristics of the governing partial differential equations of equi-
librium and compatibility. Under plane stress, the governing equations may be either hyperbolic, parabolic
or elliptic, depending on the combination of stresses and the resulting position on the yield surface. Under
hyperbolic conditions plane stress slip lines comprise a non-orthogonal grid in which the direct stress across
the lines is twice that along the lines. Consequently, the slip lines are lines of zero extension. The angle be-
tween the lines depends on the stress state, but in the limit may become zero to give a single set of charac-
teristics when the equilibrium equations are parabolic. For completeness it should be mentioned that in the
elliptic case the slip lines are imaginary, as opposed to real. The discussion is developed using cylindrical co-
ordinates (r, 0) centred at the crack tip such that the crack flanks lie along 6 = +x. With this notation, Rice
(1982) has shown that under plane stress conditions, the assumption that the crack tip stresses are finite,
plus the incompressibility condition and the yield criterion, allows the asymptotic equilibrium equations
to be reduced to

90w Osy _ 0 (1)
o0 00

where ¢, is the mean stress and s,, is the radial stress deviator. The equation has two simple solutions sub-

ject to the condition that the yield criterion is satisfied. The condition that the mean stress is independent of

angle gives rise to constant stress sectors, in which the slip lines are straight, but non-orthogonal. The con-

dition that the radial stress deviator does not vary with angle, identifies curved fan sectors which comprise

straight radial lines intersected by a set of curved characteristics with an equation of the form

r*sin(0 — ¢) = constant (2)

where ¢ is the angle to which the curved lines are asymptotic. A fully developed curved fan is shown in
Fig. 3. At the asymptotic angle the two sets of slip lines merge and the equilibrium equations become par-
abolic. The stresses may be expressed as

0, = tkcos(0 — ¢) (3.1)
ag0 = £2kcos(0 — ¢) (3.2)
0,9 = ksin(0 — ¢) (3.3)

The alternative solution to Eq. (1) is a sector in which the mean stress is independent of angle and the
Cartesian stresses 011, 02> and o1, are constant, subject to the requirement that the yield criterion is satis-
fied. The angle between the characteristics can be determined by using the stress—strain relations in conjunc-
tion with the stress transformation equations. An important case arises in uniaxial tension or compression,
where the slip lines are symmetrically disposed at +54.7° and 4125.3° to the direction of uniaxial stress.

Finally the stresses within an elastic sector can be expressed in terms of the semi-infinite wedge solution
given by Timoshenko and Goodier (1970), subject to the requirement that the yield criterion is not violated
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Fig. 3. A fully developed curved fan.

G, = Ay sin 26 + A cos 20 + (430 + A4) /2 (4.1)
ogg = —A sin 20 — A, cos 20 + (A30 +A4)/2 (42)
0,0 = Ay €08 20 — Ay sin 20 — A3 /4 (4.3)

where A, 4>, A3, and A4 are constants which are to be determined by the boundary conditions on the sec-
tor. In the present work elastic sectors arise on the crack flanks (6 = 4-x) where traction free conditions give
the relations

Ay = 44, (5.1)
A4 = 2(A2 + 27TA1)

3. Assembly of sectors

The sectors can be assembled subject to the boundary conditions and continuity of tractions across the
sector boundaries. Continuity of tractions does not in itself require continuity of all the stress components.
Traction continuity requires gy and o,y to be continuous across the sector boundaries, while an argument
presented by Sham and Hancock (1999) shows that o, must also be continuous across a boundary between
an elastic sector and a fan. The boundary conditions require traction free conditions on the crack flanks
and the loading is defined by the ratio of tension to shear directly ahead of the crack. This is defined in
terms of a plastic mixity MP introduced by Shih (1973, 1974)

MP = zta.n’1 (609) (6)
T (7]

Solutions are presented for the values of the plastic mixity listed in Table 1 for which the sector angles on
the slip line fields are given in Table 2. It is argued that near mode I fields consist of a curved fan comple-
mented by elastic sectors to the crack flanks as illustrated in Figs. 4(a) and 5(a). The method of solution
starts by determining the asymptotic angle ¢ in the fan directly ahead of the crack for a defined plastic mix-
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Table 1
Elastic and plastic mixities in plane stress

Loading mode

Elastic mixity

Plastic mixity

) (M)
K; 1 1
Ki/Ky =0.45 0.27 0.38
Ki/Ky; =025 0.16 0.23
Ky 0 0
Table 2
Sector angles of the slip line fields in plane stress conditions
Sector angle (anti-clockwise positive) in degrees
01 02 03 94 95 0(, 07 93
K —39.126 39.126
Ki/Kyy =0.45 —180 —125.3 54.7 180
Ki/Kyy=0.25 —180 —125.3 —97.83 -51.92 52.77 118.6 125.3 180
Ky —180 —125.3 —109.32 —51.21 51.21 109.32 125.3 180
0,
o
a 6;

Fig. 4. (a) Sham and Hancock (1999) mode I plane stress slip line field. (b) Sham and Hancock (1999) mode I plane stress field. The

data points are numerical results while the solid lines represents the analytic solution.

ity. In the fields presented the plane directly ahead of the crack always lies in a curved fan sector in accord
with an assumption of Shih (1973), but in contrast to the fields discussed by Dong and Pan (1990). This

allows the relation between the asymptotic fan angle ¢ and the plastic mixity to be written as

¢ =tan"! (2 cot (nTMP>>
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Fig. 5. (a) Slip line field at the crack tip under plane stress mixed mode (K;/Kj; = 1) loading. (b) Stress field at the crack tip under plane
stress mixed mode loading (Ki/Ky; = 1). The data points are numerical results while the solid lines represents the analytic solution.

Continuity of stresses a,,, ggg and a,9 across the sector boundary at 0, allows Egs. (3.1)—(3.3) to be com-
bined with Egs. (4.1)—(4.3) and (5.1) and (5.2) to give three equations which can be solved simultaneously to
define the sector boundary 6, and the two unknown constants 4; and A4,. An identical argument gives the
corresponding sector boundary 0, between the fan and the elastic sector on the lower flank. Finally it is nec-
essary to check a posteriori that the stresses postulated in any elastic sectors do not violate the yield criterion.

The mode I field, which is shown in Fig. 4(a) and discussed in detail by Sham and Hancock (1999), can
be regarded as a limiting case of a near mode-I field. The field consists of a curved fan sector directly ahead
of the crack in the angular range 6 = +39.126° complemented by elastic sectors extending to the crack
flanks. The mode I stress field is shown in Fig. 4(b). Under mixed mode loading, the near mode I fields
consist of a simple modification to this such that the curved fan rotates, but remains complemented by
asymmetric elastic sectors to the crack flanks. As an example a mixed mode field corresponding to a remote
ratio Ki/Ky; = 1 and plastic mixity, 0.58 is shown in Fig. 5(a). The field consists of a curved fan which ex-
tends between 53.34° and —69.6°. The slip lines in the fan are asymptotic to —57.17° while elastic sectors
extend to the crack flanks. The corresponding stress field is shown in Fig. 5(b).

A critical transitional field arises when the angle of the elastic wedge on the upper crack flank reaches
54.7° and the asymptotic fan angle ¢) = —70.53° and the plastic mixity MP is 0.392. The yield criterion is
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violated in any postulated elastic sector between the fan and the crack flanks, but the field can be completed
by a constant stress sector extending from 54.7° to the upper flank. The stress within this sector is a simple
uniaxial compression parallel to the crack flanks

0.r = —V/3kcos?0 (8.1)
a9 = —V/3ksin’0 (8.2)
G = ?ksin%) (8.3)

where 54.7° < 0 < 180°.

On the lower flank a constant stress sector emerges in the angular range —125.3° > 6 > —180° from the
fan to the crack flank. The remote loading condition, K;/Kj; = 0.45, gives a plastic mixity MP is 0.38 which
is very close to the critical configuration, at which plasticity breaks through to the upper and lower crack
flanks. This slip line field is illustrated in Fig. 6(a) and the corresponding stress field is given in Fig. 6(b).
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Fig. 6. (a) Slip line field at the crack tip under plane stress mixed mode (Ky/Ky; = 0.45) loading. The centred fans are shaded for clarity.
(b) Stress field at the crack tip under plane stress mixed mode (Kj/Ky; = 0.45) loading. The data points are numerical results while the
solid lines represent the analytic solution.
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With increased levels of applied shear a fan emerges at 125.3° and a constant stress sector develops at
—70.53° which is the asymptotic angle of the fan ahead of the crack. This gives rise to the near mode II
fields. Near mode II fields consist of constant stress sectors on the upper and lower flanks leading to curved
fan sectors and two further constant stress sectors which adjoin a curved fan directly ahead of the crack as
shown in Fig. 7(a). The method of solution starts by determining the asymptotic fan angle (¢ = ¢,) for the
fan directly ahead of the crack using Eqgs. (6) and (7). The constant stress sector angle 6, = 125.3° and con-
tinuity of stress across this sector boundary gives the asymptotic fan angle (¢ = ¢») for the fan, which ini-
tially emerges at 125.3°, as 70.53°. The field above the crack plane is fixed by the span of the constant stress
sector between 05 and 0. The angle between the slip lines in a constant stress sector gives the relation

tan(0s — 0s) = 2tan(¢; — ¢,) )
while equating the mean stress at 05 and 0g gives the relation
(05 + 05) = (n+ ¢ + ¢2) (10)
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Org
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b 6 (deg)

Fig. 7. (a) Slip line field at the crack tip under plane stress mixed mode (Ki/Ky; = 0.25) loading. The centred fans are shaded for clarity.
(b) Stress field at the crack tip under plane stress mixed mode (K;/Ky; = 0.25) loading. The data points are numerical results while the
solid lines represent the analytic solution.



3700 M. Rahman, J.W. Hancock | International Journal of Solids and Structures 43 (2006) 3692-3704

b 6 (deg)

Fig. 8. (a) Slip line field at the crack tip under plane stress mode II loading. The centred fans are shaded for clarity. (b) Stress field at
the crack tip under plane stress mode II loading. The data points are numerical results while the solid lines represent the analytic
solution.

These equations are solved simultaneously to give numerical values of 05 and 0¢. A similar procedure
gives the sector boundaries on the lower flank. For the remote loading condition, K;/Kj = 0.25,
MP =0.23, the slip line field is shown in Fig. 7(a) and the corresponding stress field in Fig. 7(b). Finally
in pure shear, K;/K;; = 0, the anti-symmetric field, identified by Shih (1973) emerges, for which the slip line
field is shown in Fig. 8(a) and corresponding stress field is given in Fig. 8(b).

4. Boundary layer formulations

To verify the analytical solutions, a finite element technique based on modified boundary layer formu-
lations (Rice and Tracey, 1973) has been used to obtain numerical solutions for contained yielding. Carte-
sian displacements corresponding to the stress intensity factors for a general mixed mode loading were
obtained by superimposing the displacements u’f‘ and uf‘, for a mode I field with those associated with
a mode II field «{™ and u5"

up = ul' +uf" (11.1

uy = s +us" (11.2)
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where
uy! :f—é(é)%(cosg(;c— 1 +23in2§>) (12.1)
uy! = f—([; (i)%(smg ( + 1 — 2cos’ g)) (12.2)
upt = 1;(1; ( )%(sm <K + 1 4 2cos’ g)) (12.3)
s = % (é)%( c0s 5 (K — 1 —2sin’ g)) (12.4)

K; and Kj; are the mode I and mode II stress intensity factors, r is the distance from the crack tip,
k= (3 —v)/(1 +v), vis Poisson’s ratio and G is the shear modulus. Numerical solutions were developed
with a Poisson’s ratio of 0.49, giving a response which is close to incompressible. In order to verify the ana-
lytic solutions, finite element solutions have been determined for specific ratios of elastic mixity defined by
the ratio (Ki/Kip) or by an elastic mixity, M as given in Table 1.

2 KI
M =Ztan! | — 1
TEta (KH) ( 3)

The calculations have generally been performed using boundary layer formulations in which the dis-
placements associated with the leading singularity are applied to the outer boundary of the mesh. However,
the second order term in the asymptotic expansion of the elastic field (Williams, 1957), known as the 7-
stress is known to have strong effect on plane strain fields (Du and Hancock, 1991). As a result a limited
number of calculations were performed using displacements corresponding to the first two terms of the
expansion of the asymptotic elastic field given by Williams (1957). The displacements associated with the
T-stress are

Trcos 0

ul = ”2’3 (14.1)
Trsin 0

ul = =2 r;n (14.2)

where E is Young’s Modulus.

The crack-tip fields have been modelled by using a highly focused mesh based on 24 rings of 24 isopara-
metric second-order hybrid elements concentric with the crack tip. The crack tip thus consists of 49 initially
coincident, but independent nodes. Under elastic perfectly-plastic conditions the asymptotic crack tip stres-
ses are finite, and have been determined numerically by extrapolating the stresses to the crack tip along ra-
dial lines at 7.5° intervals around the crack tip. The slip line fields can be constructed from these numerical
results using Eq. (1) to identify the constant stress and fan sectors, subject to the condition that the yield
criterion is satisfied, while the elastic sectors are identified by the condition that the Mises stress is less than
the uniaxial yield stress, g¢. Figs. 4(b)-8(b), compare the analytic solutions with the numerical results. The
numerical results indicated by points and the analytic solutions shown as continuous lines are clearly in
excellent agreement. The 7T-stress modifies the relation between the elastic and plastic mixities, but has little
effect on the asymptotic mode I stress field. However, it does affect the size and shape of the plastic zone at
the crack tip as shown in Fig. 9. Negative (compressive) 7-stresses enlarge the plastic zone which forms two
distinct lobes ahead of the crack tip, while tensile 7-stresses enlarge the plastic zone on the crack plane.

Strain hardening solutions have been obtained for a strain hardening response which in uniaxial tension
is linearly elastic below the yield stress o, and merges into a Ramberg—Osgood power hardening relation-
ship above the yield stress. Numerical calculations have been performed for strain hardening exponents
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Fig. 9. Effect of the T-stress on the plastic zone at the crack tip under plane stress mode I loading. (a) 7= —0.54, (b) 7= 0 and (c)
T = +0.50y.

n =0.05 and 0.1 which represent a weak and a moderate strain hardening responses. For a strain hardening
response the HRR fields define the strength of the dominant singularity. However as all the stress compo-
nents have the same radial dependence, the stresses normalised by the corresponding local Mises stress are
finite. Non-dimensionalised in this way the stresses can be extrapolated to the crack tip in the same way that
the stresses normalised by the yield stress were extrapolated to the tip for an elastic perfectly-plastic re-
sponse. In order to show the structure of the strain hardening fields interest is focussed on the asymptotic
mean stress, o, and the radial stress deviator, s, normalised by the Mises stress. These are plotted for two
strain-hardening rates in Figs. 10(a) and (b). The numerical solutions are compared with the mode I elastic
perfectly-plastic solution proposed by Hutchinson (1968b) which is indicated by a solid line, while the
numerical data are indicated by points.
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Fig. 10. (a) Comparison of radial stress deviators in the Hutchinson (1968b) mode I field and in mode I hardening solutions in plane
stress. The discontinuity in the Hutchinson field occurs at 151.4°. (b) Comparison of mean stresses in Hutchinson (1968b) mode I field
and in mode I hardening solutions in plane stress. The discontinuity in the Hutchinson field occurs at 151.4°.

5. Discussion

Elastic perfectly-plastic fields are often regarded as the non-hardening limit of the HRR fields. However
the absence of strain hardening permits the existence of elastic sectors in which the yield criterion is not
satisfied. In near mode I this leads to fields comprising a curve fan complemented by elastic sectors on
the crack flanks. The fan rotates with increasing mode II loading until a critical configuration arises when
constant stress sectors break through to the crack flanks. With increased levels of shear, additional constant
stress and curved fan sectors emerge, leading to the near mode II fields discussed by Shih (1973). All the
fields in the family of fields exhibit full continuity of stresses.

The structure of the plane stress strain hardening fields can be related to those for perfectly-plastic con-
ditions by examining the angular variation of mean stress and the radial stress deviator normalised by the
Mises stress as shown in Fig. 10(a) and (b). In perfectly-plastic conditions the fields consist of assemblies of
curved fan, constant stress, and elastic sectors. In numerical solutions the fans can be identified as sectors in
which the radial stress deviator s, is zero. This feature is retained in strain hardening and a fan-like feature
extends directly ahead of the crack tip with a similar span to that found in perfect plasticity. Unlike the
perfectly-plastic solution strain hardening causes plasticity to encompass the crack tip at all angles. In
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perfect-plasticity constant stress sectors exhibit a mean stress which is invariant with angle. This feature is
also shown by the strain hardening solutions in Fig. 10(b) which show two constant stress like features. One
extends from crack flanks to an angle close to 150° and another sector extends from 150° to adjoin the fan-
like feature. The constant stress sectors are separated by a narrow zone featuring very high angular stress
gradients. The perfectly-plastic solution of Hutchinson (1968b) has been plotted in both Figs. 10(a) and (b),
in which plasticity is assumed to surround the crack tip at all angles. It is clear that the strain hardening
solutions tend towards this field as the strain hardening exponent decreases. The stress discontinuity in
the Hutchinson solution appears as the zone of high angular stress gradients in the strain hardening solu-
tion. However in the limit of perfect-plasticity the nature of the fields abruptly changes as elastic sectors
appear on the crack flanks.
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